Functional interactions between large-scale networks during memory search.
نویسندگان
چکیده
Neuroimaging studies have identified two major large-scale brain networks, the default mode network (DMN) and the dorsal attention network (DAN), which are engaged for internally and externally directed cognitive tasks respectively, and which show anticorrelated activity during cognitively demanding tests and at rest. We identified these brain networks using independent component analysis (ICA) of functional magnetic resonance imaging data, and examined their interactions during the free-recall task, a self-initiated memory search task in which retrieval is performed in the absence of external cues. Despite the internally directed nature of the task, the DAN showed transient engagement in the seconds leading up to successful retrieval. ICA revealed a fractionation of the DMN into 3 components. A posteromedial network increased engagement during memory search, while the two others showed suppressed activity during memory search. Cooperative interactions between this posteromedial network, a right-lateralized frontoparietal control network, and a medial prefrontal network were maintained during memory search. The DAN demonstrated heterogeneous task-dependent shifts in functional coupling with various subnetworks within the DMN. This functional reorganization suggests a broader role of the DAN in the absence of externally directed cognition, and highlights the contribution of the posteromedial network to episodic retrieval.
منابع مشابه
1 Functional interactions between large - scale networks during memory search Running Head : Large - scale networks supporting memory search
Neuroimaging studies have identified two major large-scale brain networks, the default mode network (DMN) and the dorsal attention network (DAN), which are engaged for internally and externally directed cognitive tasks respectively, and which show anticorrelated activity during cognitively demanding tests and at rest. We identified these brain networks using independent component analysis (ICA)...
متن کاملLarge scale neurocognitive networks underlying episodic memory.
Large-scale networks of brain regions are believed to mediate cognitive processes, including episodic memory. Analyses of regional differences in brain activity, measured by functional neuroimaging, have begun to identify putative components of these networks. To more fully characterize neurocognitive networks, however, it is necessary to use analytical methods that quantify neural network inte...
متن کاملImpact of real-time fMRI working memory feedback training on the interactions between three core brain networks
Working memory (WM) refers to the temporary holding and manipulation of information during the performance of a range of cognitive tasks, and WM training is a promising method for improving an individual's cognitive functions. Our previous work demonstrated that WM performance can be improved through self-regulation of dorsal lateral prefrontal cortex (PFC) activation using real-time functional...
متن کاملThat’s me in the spotlight: neural basis of individual differences in self-consciousness
A long-standing literature implicates activity within the default mode network (DMN) to processes linked to the self. However, contemporary work suggests that other large-scale networks networks might also be involved. For instance, goal-directed autobiographical planning requires positive functional connectivity (FC) between DMN and frontoparietal control (FPCN) networks. The present study exa...
متن کاملCompetitive and cooperative dynamics of large-scale brain functional networks supporting recollection.
Analyses of functional interactions between large-scale brain networks have identified two broad systems that operate in apparent competition or antagonism with each other. One system, termed the default mode network (DMN), is thought to support internally oriented processing. The other system acts as a generic external attention system (EAS) and mediates attention to exogenous stimuli. Reports...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cerebral cortex
دوره 25 3 شماره
صفحات -
تاریخ انتشار 2015